
N93-19410

1992 NASA/ASEE SUMMER FACULTY FELLOWSHIP PROGRAM

JOHN F. KENNEDY SPACE CENTER

UNIVERSITY OF CENTRAL FLORIDA

A LOGISTICS AND POTENTIAL HAZARD STUDY OF PROPELLANT SYSTEMS FOR

A SATURN V DERIVED HEAVY LIFT (THREE-STAGE CORE) LAUNCH VEHICLE

PREPARED BY:

ACADEMIC RANK:

UNIVERSITY AND DEPARTMENT:

NASA/KSC ,

DIVISION:

BRANCH:

NASA COLLEAGUE:

DATE:

CONTRACT NUMBER:

Dr. E. Dow Whitney

Professor

University of Florida

Department of Materials Science

and Engineering

Mechanical Engineering

Propellants and Gases

James England

August 14, 1992

University of Central Florida

NASA-NGT-60002 Supplement: 8

561



ACKNOWLEDGMENTS

To Dr. Loren Anderson and the other program administrators, I express my

appreciation for being selected as a 1992 NASA/ASEE Summer Faculty Fellow. To

my NASA colleague, James England, I am partlcularly indebted for his assistance,

guidance and encouragement. The charm and friendliness of Mrs. Karl Stiles and

Ms. Carol Valdes in smoothing the transition from Galnesvllle to KSC is also very

much appreciated. Particular thanks to Carol for putting up with a group of

unruly professors during the weekly KSC orientation tours.

I am very grateful to all the members of the Propellants and Gases Branch staff,

particularly Branch Chief, Roger Hall, as well as David Weldermuth, James

Fesmlre, and Jamle Hurley, for their advice and support. To James Fesmlre, I

apologize agaln for getting lost on Launch Complex 39A Just a few days before

Space Shuttle Columbia roared off into space.

Special recognition must go to the Branch Secretary, Mary Conklin, for her

cheerful assistance and patience, and to Pam Howell, Senior Secretary at the

University of Florida, Department of Materials Science and Engineering, who, as

always, has transformed my scratching into a very presentable document. As is

true with respect to secretaries in any well-run organization, without people

llke Mary and Pam, this work would never have been completed.

This acknowledgment would not be complete without expressing my sincere gratitude

to George Sauro of the Boeing Aerospace Operational Engineering Support Group at

KSC for the technical illustrations and graphs which appear in this report.

Finally, to all my friends and colleagues at Kennedy Space Center and the

University of Central Florida, thanks again for the opportunity to work on rocket

propellants again after some thlrty-three years ...... it's been a blastl

V

v

562



ABSTRACT

The Bush Administration has directed NASA to prepare for a return to the moon and

on to Mars - the Space Exploration Initiative. To meet this directive, powerful

rocket boosters will be required in order to llft payloads that may reach the

haif-milllon pound range into low earth orbit. In this report an analysis is

presented on logistics and potential hazards of the propellant systems envisioned

for future Saturn V derived heavy llft launch vehicles. In discussing propellant

logistics, particular attention has been given to possible problems associated

with procurement, transportation, and storage of RP-I, LH2, and LOX, the heavy

llft launch vehicle propellants. Current LOX producing facilities will need to

be expanded and propellant storage and some support facilities will require

relocation if current Launch Pads 39A and/or 39B are to be used for future heavy

llft launches. No major technical problems are envisioned except for improved

nolse-abatement measures. Included in the report is a discussion of suggested

additional studies, primarily economic and environmental, which should be

undertaken in support of the goals of the Space Exploration Initiative.

563



SUMMARY

As part of the Space Exploration Initiative for the year 2000 and beyond, NASA

is planning flights to both the moon and Mars. Initially, eight flights per year

are planned; four to the moon and four to Mars. T_e proposed launch vehicle is

a Saturn V derived HLLV (three-stage core) with a four-booster configuration.

The payload will be large, 620 Klbs. (281 mr). Lift-off will be accomplished

(Core Stage I and four boosters) with seventeen F-IA engines. The propellant

system will consist of high grade kerosene fuel (RP-I) and liquid oxygen (LOX)

for the first stage and LOX and liquid hydrogen (I/42) for the second stage.

Although the proposed propellant system represents a technology which is at least

thirty years bid, the magnitude of the quantlty of propellants which will be

employed in HLLV launch vehicles presents unique logistics, handling and safety

problems, me HLLV will consume 20.6 million pounds of propellant, a 340%

increase over propellant consumption of the Saturn V. There are unlque problems

which must be addressed when hahdii6g thls quantity of fuel.

Problems addressed during the course of this work period were:

o Petroleum and petrochemical reflnlng/productlon capabilltles of the

United States in terms Of future HLLV Op_ratlons and performance goals.

o Present ana _utu_e I/42 and LOX production capabilities of the United

States in terms Of future HLLV Operations and performance goals.

o Logistics of transporting large quantities of RP-I, LH2, and LOX from

production SlC4_ to HLLV launch sites.
=

o storage of iarge qu_ntlties of pr_pellants in the vicinity of HLLV

launch sites.

o Safety aspects and posslble accident scenarios such as RP-I emergency

dumping, acoustic problems, and fireball and blast effects.

V
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I INTRODUCTION

OnJuly 16, 1969, the Apollo Ii Spacecraft, freed from Earth's gravity by means

of the powerful Saturn V launch vehicle, took man to the surface of the moon for

the first time. Over the next three years, this phenomenal feat was to be

repeated five more times. In each mission, a Saturn V launch vehicle was used

to boost the various Apollo spacecrafts to the moon. The force used to

accomplish the first stage of this unparalleled feat was provided by a cluster

of five Rocketdyne F-I rocket engines, each developing over 1.5 million pounds

of thrust (I). Since 1972, major activity at Kennedy Space Center (KSC) has

centered around the Space Shuttle and Saturn V activity was essentially

terminated.

I.i NATIONAL LAUNCH SYSTEM AND THE SPACE EXPLORATION INITIATIVE

Meeting the demands of the National Launch System (NLS) Program, as well as a

directive from the Bush Administration for a return to the moon and exploration

of Mars, i.e., the Space Exploration Initiative (SEI), will require the ability

to llft huge payloads into low earth orbit. Such payloads may reach the half-

million pound range, requiring especially powerful boosters used as strap-ons to

a core vehicle (2). In order to accomplish these goals, it has been proposed

that future heavy llft launch vehicle (HLLV) designs be based on trled-and-true

Saturn V technology employing a new updated version of the F-l, i.e., the F-IA

rocket engine (3).

1.2 THE F-IA ROCKET ENGINE

One can make strong arguments for the proposal that future HLLV designs be based

upon Saturn V technology. Not only was the F-I engine the largest, most powerful

liquid rocket engine ever built but the performance of this engine was

exceptional. Sixty-five F-l's were launched with a 100% flight success rate (4).

In addition, the F-I burned liquid oxygen (LOX) and kerosene (RP-I), a proven

technology. To meet the challenge, which will be imposed by future HLLV designs,

Rocketdyne not only proposed but has already tested an improved, modernized

version of the F-l, the F-IAenglne. This engine has the capability of providing

1.8 million pounds of thrust.

i. 3 THE HEAVY LIFT LAUNCH VEHICLE

As part of the SEI program, the Exploration Programs Office (EPO) at KSC is

considering a number of different designs of future lunar and Mars exploration

vehicles. In addition to vehicles, design work is underway on the extension of
Launch Pad 39A for SEI Mars capability as well as flame deflectors, new and

heavier launcher decks, and enlarged vehicle assembly buildings (personal

communication with Donald W. Page, National Launch System - HLLV Office, KSC,

Florida, July 9, 1992).

Of the different families of future lunar/Mars vehicles being studied at EPO/KSC,

the particular HLLV design considered for this study appeared to be the most

ambitious. Thus the rationale for choosing this particular HLLV was that scaling

down is easier than scaling up.

-- I

V
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Figure I-I. Saturn V Derived HLLV (Three-Stage Core), Four-Booster

Confi&uratlon Rocket. Saturn V Rocket Included for Comparison.

569



1.3.1 GENERALFEATURES. In Figure I-i is shown a schematic of the Saturn V

derived HLLV (three-stage core), four-booster configuration rocket whlchwas used

as the basis for this study. Also included in Figure i-I for size comparison is

a schematic of the Saturn V rocket. To the left of the figure is shown how the

seventeen F-IA engines will be positioned in Core Stage I of the rocket (five

engines) and in the four strap-on boosters (three engines each), as well as the

positioning of the six LOX/LH z J-2S engines in Core Stage If.

Although the dlmenslon(s) given in Figure i-I for the HLLV are impressive, a

better appreciation for its size can be gleaned from Figure 1-2 in which is shown

the relative sizes of the HLLV, Saturn V, and Space Shuttle.

In Table i-I are given some statistics for the HLLV with particular emphasis on

propellant inventory.

V

TABLE I-i

SATURN V DERIVED HLLV (THREE-STAGE CORE), FOUR-BOOSTER CONFIGURATION

DESIGN AND PROPELLANT DATA SUMMARY

Shroud
Diameter/Length - 50 ft./175 ft.

Weight - 114,600 ibs.

Cargo Diameter/Length - 46 ft./lO0 ft.

_nstrument Unit Weight - 6,488 ibs.

Core Stage 5! - (Common Bulkhead Tanks)

Six J-2S Rocketdyne Engines (Thrust 265,000 Ibs. ca.)

Inert Weight - 136,395 ibs.

Propellants - LOX/LH 2

Reserve Propellant - 17,310 Ibs.

Burned Propellant - 1,346,279 ibs.

Co_e Stage ; - (Separate Tanks)

Five F-IA Rocketdyne Engines (Thrust - 1,800,000 Ibs. ca.)

Inert Weight - 468,467 ibs.

Propellants - LOX/RP-I

Usable Propellant - 5,919,370 Ibs.

-Boosters (_ach) - (SeDara_e-Ta_ks_ -

Three F-IA Engines (Thrust - 1,800,000 ibs. ca.)

Inert Weight - 173,671 ibs.

Propellants - LOX/RP-I

Usable Propellant - 3,442,164 ibs.
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1.3.2 PROPELLANT SYSTEMS. Like Saturn V, the HLLV will burn LOX and RP-I In Core

Stage I, as well as in the four strap-on boosters. In Table 1-2 are given

calculated values for LOX and RP-I consumption in the HLLV with its seventeen

F-IA engines, along with LOX and RP-I consumption for the Saturn V launch vehicle

(5,6). Total propellant consumption per F-IA engine calculated from the data in

Table I-I Is 1,130,000 ibs./engine, an amount 23% greater than the propellant

consumption for the F-1 engine (918,060 lbs.). This value agrees well with the

20% increase in thrust reported by Rocketdyne in upgrading from the F-I engine

(1,500,000 ibs. thrust) to the F-IA engine (1,800,000 Ibs. thrust).

V

TABLE 1-2

COMPARISON OF LOX AND RP-1 CONSUMPTION IN HLLV

(CORE STAGE I AND FOUR BOOSTERS) AND SATURN V

PROFELLART
i i

LOX RP-I TOTAL PROPELLANTS

GALLONS POVNDS GALLONS POUNDS GALLONS POVNDSVEHICLE

HLLV 1,399,306 13,335.382 870,314 5,874,618 2.269,620 19,210,000

SATURN V 348,960 3,306. 526 213,068 1,438,210 560,028 4,744,736

Comparison of the data in Table 1-2 shows that Core Stage I of the HLLV will

consume four times the quantity of LOX consumed by the Saturn V first stage and

4.1 times the quantity of RP-I.

Propellants for Core Stage II of the HLLV are LOX and liquid hydrogen (LH2) , the

same as In the second and third stages of Saturn V. In Table 1-3 are given

calculated values for LOX and LH 2 consumption in the HLLV with its six Rocketdyne

J-2S engines, along wlth LOX and 1/42 consumption for the Saturn V launch vehicle

(5,6).

VEHICLE

TABLE I-3

COMPARISON OF L0X AND LHz C0NS_PTiON IN HLLV (CORE STAGE II)

AND SATURN V (SECOND AND THIRD STAGES)

PROPELLANT

I._ _ _vrAL _J.A_s

GALLONS POUNDS GALLONS POUNDS C_qLLONS POUNDS

EI,I.V 121.071 1.153,806 361,605 209.783 482,766 1,363,589

SATURN V 108,129 1,027,229 350,507 203,294 458,636 1,230,523
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Inspection of Table I-3 reveals that there will be very little difference in the

quantity of propellants Consumed in HLLV Core Stage II as compared to the

combined second and third stages of Saturn V. In hindsight, this is not

surprising since HLLV Core Stage II will have six J-2S engines whereas the second

and third Saturn V stages also had a total of six J-2 engines.

In terms of propellant consumption, the major difference between HLLV and

Saturn V lies in the increased quantities of RP-1 and LOXwhich will be consumed

in the first stage of the former. The logistics of fuel supply for the HLLV is

of primary concern with regard to the first stage.

Data presented in Tables I-2 and 1-3 are summarized in Table I-4 in which is

summarized total propellants (exclusive of hypergollcs) consumed in all stages

of the HLLV and Saturn V.

TABLE I-4

SUMMARY OF TOTAL PROPELLANTS CONSUMED IN ALL STAGES

OF THE HLLV AND SATURN V

PROPELLANT

I_ I_-I _ _AL PRO_S

VEHICLE GALLONS POUNDS GALLONS POUNDS GALLONS POUNDS GALLONS POUNDS

ELI, V 1,$20,377 14.489,188 870,314 5,874,618 361,695 209,783 2,752,386 20,';73,589

SATURN V 455,089 4,333,755 213,060 1,438,210 350,507 203,294 1,018,664 5,975,2._9

1.3.3 PERFORMANCE CHARACTERISTICS. Core Stage I (along with its boosters) of the

HLLV with consume 19,210,000 pounds (2,269,620 gallons) of propellants in its

seventeen F-IA engines, resulting in a total thrust of 30,600,000 ibs. The

oxidizer to fuel ratio is 2.27:1 and exhaust gas composition for the F-IA is

known (7). Thus it can be shown that during HLLV first stage burn, the major

products of combustion of LOX and RP-I will be 1,900 metric tons (mt) of CO 2,

2,200 mt of H20 vapor, and 4,190 mt of CO. Whereas the latter is a poisonous

gas, it would not (as with Saturn V launches) pose a hazard since the hot gas is

quickly oxidized to CO2. This oxidation process accounts for the pale blue flame

sometimes seen below the yellow/whlte flame discharge from the F-I engines during

Saturn launches. Total thermal energy output from Core Stage I and boosters will

be on the order of 2 x 1010 kiloca!orles (8 x I0 I0 Btu). This tremendous energy

will llft a payload of approximately 620,000 ibs. (281 mr) into space at a

maximum acceleration of 4.9 g's.

Since the incredible energy of the Saturn V booster with its five F-I engines has

been equated to the power output of 85 Hoover Dams (4), the power output of the

particular HLLV design which is the subject of this study is on the order of 350
Hoover Dams!
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II PROPELLANT LOGISTICS

2.1 RP-1

2.1.I SOURCE. All RP-I now utilized in launches at Cape Canaveral Air Force

Station (CCAFS), as well as in earlier Saturn V launches at KSC, is procured

through the Directorate of Aerospace Fuels (DAF), Propellants Branch, Kelly Air

Force Base (AFB), Texas (personal communication with Curtis A. Williams, Fluids

Management Group, Technical Operations Division, EG&G Florida, Inc., KSC,

Florida, july 28, 1992). DAF is responsible for supplying RP-I and LOX to U.S.

Government Agencies on the East Coast but not responsible for the supply of LH 2.

At the present time, the U.S. Air Force is the only customer for RP-I which is

supplied to CCAFS by Howell Hydrocarbons, Inc., of San Antonio, Texas. Howell

Hydrocarbons, Inc. serves as a storage and supply source, the RP-I being produced

by local petroleum refineries, although since the termination of Saturn V several

suppliers of RP-I are no longer in business.

Currently, RP-I is utilized as fuel in the KSC/CCAFS complex only for the first

stages of the Delta II launch vehicle at Complex 17 and the Atlas I and II launch

vehicles at Complex 36. The Delta booster requires approximately 10,000 gallons

of RP-I, the Atlas booster 18,000 gallons, whereas the Saturn V required 213,000

gallons. In calculating RP-I supply requirements, it has been suggested that a
16% loss of fuel should be assumed (memorandum from Jared P. Sass to James

Fesmlre, Mechanical Engineering Division, Gases and Propellants Branch, KSC,

Florida, dated'February 6, 1992). However, this factor has not been included in

these calculations on the basis that, particularly with the quantities of RP-I

which will be required for the HLLV, such losses will not be tolerated

considering today's tight environmental restrictions.

At 870,000 gallons per launch and eight launches per year (four to the moon and

four to Mars) as planned in the SEI program, some 6,960,000 gallons of RP-I will

be consumed. However, in addition to the RP-I consumed at launch, two to three

times this amount will be utilized in required testing and certification of the

F-IA engines at NASA Stennis Space Center (SSC) in Bay St. Louis, Mississippi

(conference with John Nagle and Michael M. Paul, Directorate of Aerospace Fuels,

Propellants Branch, Kelly AFB, Texas, July 30, 1992). SSC, which currently has

the responsibility of certifying shuttle engines, is actively planning for the

tes£1ng and cer_iflcat{on Of F-IA engines for future SEI vehicles.

Kerosene productlonln'the United States in 1991 amounted to 13,952,000 barrels

(585,984,000 gallons) (telephone conversat[0n w_th Julle Scott, American
Petroleum Institute, Washington, DC, July 10, 1992). At first this figure was

thought to be of-concern to figure HLLV missions since it represents an almost

52%decrease _nannual U.S. kerosene productlonfrom1988to !991. This decrease

is only apparent since-durlng the-period 1988 to 1991 some petroleum companies

began reporting Jet fuel pr0ductlon as a separate entity. Since kerosene and jec

fuels fall into the same middle distillate group during the fractional

distillation of petroleum, this has the effect of lowering the overall production

figures for kerosene (telephone conversation with Alice Lippert, Fuel Oil and

Kerosene Sales Data (Annual), Department of Energy, Washington, DC, July 7,

1992). It is obvious from the above figures that, given the demand, refining

V
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capability exists for meeting any future HLLV RP-I requirements. It is not

expected that RP-I supply will limit future SEI missions involving HLLV's.

2.1.2 TRANSPORTATION. Currently, the RP-I, which is employed in Atlas and Delta

boosters, is transported from Howell Hydrocarbons, Inc., in San Antonio, Texas,

to Fuel Storage Area I, CCAFS in 7,000 gallon mobile commercial tankers. The

RP-I is then delivered to launch sites by 5,000 gallon refuelers although future

planning provides for a 7,000 gallon KSC mobile tanker and a pumper cart to be

refurbished and activated for RP-I support (personal communication with Irving

H. Stenner, Systems Engineering, Technical Operations Division, EG&G Florida,

Inc., KSC, Florida, June 23, 1992, and July 22, 1992). During Saturn V activity,

RP-I was delivered to KSC/CCAFS via 10,000 gallon capacity tall tank cars.

Today, only one NASA owned RP-I rall car remains at KSC and is apparently in poor

condition.

Since the capacity of a standard size rail car for RP-I is only I0,000 gallons,

this mode of fuel transportation, which deemed practical for Saturn V, will not

be practical for meeting RP-I fuel requirements for the HLLV. A more attractive

means of transportation would be by petroleum product barges.

The capacity of commercial ocean-golng barges for the transportation of

hydrocarbons ranges between 2,500 to 7,500 U.S. short tons (telephone

conversation with Roy Walsh, Waterborne Commerce Statistics Center, New Orleans,

Louisiana, July 15, 1992) which for RP-I equates to a liquid capacity of between

740,740 and 2,222,000 gallons. In addition, data from the Maritime

Administration confirms that there are a number (more than 300) of tank barges

with capacities exceeding 3,000 short tons available for coastline transport of

fuel to the KSC/CCAFS complex (telecopler memorandum from Walter Oates, Office

of External Affairs, Maritime Administration, Washington, DC, dated July 30,

1992). A petroleum barge of 3,000 short ton capacity equates to a volume

capacity of 888,900 gallons of RP-I, Just slightly above the HLLV RP-I fuel

requirement. In fact, according to data obtained from the Office of External

Affairs of the Maritime Administration, Barge No. 35, designated for petroleum

products and operated by Coastal-Belcher Towing Co., identifies Cape Canaveral,

Florida, as its operating base. The capacity of this barge is given as 3,125 mr,

which translates to a 1,020,648 gallon capacity for RP-1. Since the HLLV

requires some 870,314 gallons of RP-I per launch, Barge No. 35 would appear to

be an ideal transportation vehicle for RP-I fueling of HLLV.

Barge transport of RP-I to Launch Complex 39A will not involve any new or major

construction effort. The KSC Master Plan for Complex 39A shows a barge channel

extending as a spur in a northeast direction from the barge channel used to

transport the shuttle external LOX/LH 2 tank to the vehicle assembly building

(VAB) for mating with the shuttle. This spur cuts through Jack Davis Island and

terminates immediately adjacent to Launch Pad A. This channel was used to

transport LH z by means of barge from Air Products and Chemicals, Inc., l/{2 plant

in New Orleans, Louisiana, to KSC during the early days of the Saturn V missions.

The LH 2 was off-loaded from barges to storage facilities at the launch complex.

Later in the Saturn program, LH 2 was transported by tall tank cars and mobile

tankers and barging was discontinued. This channel has probably not been used

in the last two decades. However, recent aerial photographs of the Launch
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Complex 39A area (taken for vegetation studies) reveal that this channel still

exists and appears very distinct in the photographs. Although silting, in all

probability, has occurred over the years, the channel has definitely not filled

in and would still be serviceable with minor dredging.

In addition, review of the Master Plan for Complex 39B shows that, with the

removal of two minor barricades, RP-I barges could be moved via a waterway which

extends from the northern tip of the channel at Pad 39A, proceeds north to the

east of the pad, then turns to the west, north of Pad 39A, finally leading, by

means of manmade channel, into Gator Hole, which lies to the south of Launch

Complex 39B. Thus a route exists for transporting large quantities of RP-I to

Complex 39A and, with a relatively small construction effort, similar quantities

to Complex 39B as well.

Some concern has been expressed that, since the channel to Pad 39A has been

unused for such a long time, there may be a higher than average number of manatee

(Trichechu# manatus) existing in this waterway today. However, considering how

slow a barge tug travels and with the use of suitable propeller guards, it is not

expected that the manatee population will be affected in any way.

2.1.3 STORAGE. The only active RP-I storage facilities existing at KSC/CCAFS

today are two above-ground 20,000 gallon bulk storage tanks located at Fuel

Storage Area i, CCAFS. During the Saturn missions, RP-I was stored in three

aboveground 86,000 gallon bulk storage tanks located at both Launch Pads 39A and

39B. Although adequate for Saturn V missions, the total RP-I storage at each pad

(258,000 gallons) would be entirely inadequate for HLLV operations. However, the

argument is moot since subject tanks are not double walled, do not meet current

environmental standards (8), and therefore cannot be used.

It is proposed that the most practical method of delivering RP-I to future HLLV

boosters is direct off-loadlng from RP-I barges. As discussed later in this

report (Section 3.3), a prellmlnary hazards analysis shows that If RP-I were to

be stored in permanent storage facilities adjacent to the launch pads, the

separation distance from launch site to fuel storage site will not meet safety

requirements for future HLLV operations. Another advantage of barge transport

is that the barge can be pulled away from the launch complex area after off-

loading of RP-I.

2.2 LIQUID HYDROGEN

2.2.1 SOURCE. Reference to Table I-4 shows that !/42 consumption in the HLLV will

be essentially the same as was LH z consumption in the Saturn V. Using a

multiplication factor of three for LH z required for HLLV engine certification at

SSC and assuming 26% LH 2 transfer losses based on shuttle data, some 9,071,680

Ibs. (4,1!5 mr) or 15,358,354 gallons of LHz will be required for the eight

planned HLLV launches per year. Production of hydrogen in the United States in

1990 amounted to approximately 148 billion cu. ft. (349,200 mt) (9). Preliminary

figures indicate that hydrogen production for 1991 will remain essentlally

unchanged (I0). Thus the annual consumption of LH z in future HLLV missions will

amount to slightly over I% of 1990 and 1991 LH z production levels in the United
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States. However, as is discussed below, there will be a dramatic increase in

production levels of LH 2 in the U.S. in the very near future.

Liquid hydrogen utilized at the KSC/CCAFS complex is produced in two plants

operated by Air Products and Chemicals, Inc., New Orleans, Louisiana, each plant

having a capacity of 32 mt of LH2 per day. The annual production of these plants

is 51,499,456 ibs. (23,360 mr), more than enough to meet future HLLV

requirements. In the last year, there has been increased activity in the area

of LH 2 production. Air Products and Chemicals, Inc., already the world's largest

supplier of LH2, plans to build, at a cost In excess of $15 million, a new LH z

facility in Pace, Florida, near Pensacola, as a result of a cooperative agreement

with the Spaceport Florida Authority. The plant, with a 30 ton daily production,

Is scheduled to go on-llne In early 1994 (II,12). Besides the space programs,

the Clean Air Act is stimulating growth of the hydrogen market (13).

A proposal is also under consideration for the construction of a government-owned

LHz plant at the KSC/CCAFS complex. The rationale for building such a facility

is that LH 2 is currently obtained from private industry by direct contract as

distinct from RP-I, which is obtained through DAF. Other than the government

wishing to produce its own LH 2 for economic reasons, future HLLV operations would

not appear to be limited by LH2 availability.

2.2.2 TRANSPORTATION. As already noted, the HLLV design used as the basis for

this study will essentially consume the same amount of LH2 as dld the old

Saturn V vehicles. During the early days of the Saturn proJects, LH 2 was barged

from Louislana directly to Launch Complex 39A at KSC. As previously noted, this

was the reason the barge channel was constructed to pad 39A. As was done later

in the Saturn program, tank trucks or tall tank cars could be used to transport

LH z from production plants to KSC. NASA owns four 1/42 tank trucks. The older

tank trucks have a capacity of 13,000 gallons whereas the newer units have a

capacity of between 14,000 and 16,000 gallons. NASA also owns four LH z rall tank

cars of 34,000 gallon capacity. Considering the fact that new I/4z production

facilities are being planned in Florlda, the continued use of tank trucks or rall

tank cars for LH2 transport appears to be even more attractive.

2.2.3 STORAGE. The I/qz storage facilities at Launch Complex 39A and 39B consist

of one 900,000 gallon spherical storage tank at each location. As with the

Saturn program, these LH z storage facilities will be suitable for HLLV missions

except for their present location with respect to future HLLV vehicle launch

operations (see Section 3.3 of this report).

2.3 LIQUID OXYGEN

2.3.1 SOURCE. Reference to Table I-4 shows that, unlike the situation with

regard to LH2, the proposed HLLV will consume more than three times the amount

of LOX that was consumed in Saturn V launches. Again using a factor of three to

account for LOX requirements for engine testing and certification at SSC and

assuming 60% LOX transfer losses based upon shuttle data, some 1,159 million ibs.

(525,780 mr) or 121.7 million gallons of LOX will be required for eight HLLV

launches per year. Fortunately, as with LHz, supply of LOX will be no problem.

In 1990, the United States produced 462 billion cu. ft. (17,359,000 mr) of oxygen
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(9,10). Preliminary Indications are that this production figure was slightly

exceeded (-2%) in 1991. The proposed HLLV missions would consume annually 3% of

all the oxygen that was produced in the U.S. in 1990. Oxygen ranks fourth in

total production of all the chemicals produced annually in the United States

(i0).

Today, most of the LOX utilized at the KSC/CCAFS complex is produced by PRAXAIR

(formerly Linde Air, Inc.) in Mims, Florida. This plant, which has since

expanded, was constructed in support of the Saturn program and produces 40,000

gallons a day (62,914 mr) annually. Assuming that LOX required for engine

testing and certification would come from a source outside of Florida and much

closer to the SSC facility, the current LOX production facility at Mlms, Florida,

would support less than four HLLV launches per year. Fortunately, several LOX

plants exist in Orlando, Florida. LOX manufacturing facilities also exist in

Tampa and Jacksonville, Florida.

2.3.2 TRANSPORTATION. Because of the close proximity of Mims, Florida, to KSC

and CCAFS, mobile tank trucks have always been used to transport LOX to these

facilities. However, tank trucks may not be the most practical means for LOX

transportation in future HLLV missions, particularly if it will be necessary to

transport LOX to KSC from locations further away than Mims. A more practical

means of transportation would be by rall tank cars. The volume capacity of a

typical LOX rail tank car is dictated by weight and is approximately 19,750

gallons (telephone conversation with Frank Licarl, Air Products, Inc., Allentown,

Pennsylvania, June 25, 1992).

The argument could be made that considering the quantities of LOX that will be

involved in future HLLV missions, barge transfer of LOX from the M!ms, Florida,

plant to Launch Complex 39A be considered. However, this presents a number of

complications. First, the capacity of the Mlms plant would need to be more than

doubled in order to meet proposed annual HLLV requirements. Since Mlms, Florida,

is very close to the west bank of the Indian River, LOX could conceivably be

barged from Mlms south on the indian River via the intracoastal Waterway, around

Merritt Island and then north via the Banana River and through existing channels

to Pad 39A complex. Although the relative economics of barging versus using rail

tank cars would have to be made, a safety problem immediately becomes apparent.

RP-I and LOX barges would be using the same channels, a potentially dangerous

situation in the event of an accident. Another possible LOX barge route from

Mims would be northeast on the Intracoastal Waterway, through Haulover Canal, the

southeast away from the Intracoastal Waterway, through Mosquito Lagoon and

marshes to Launch Complexes 39B and 39A. However, this route would involve

digging of new channels through environmentally sensitive wetlands and would

probably never be allowed. All factors considered, the use of rall car transport

would appear to be the most practical method for LOX transport. The Florida East

Coast Railway provides tall service to the area with a main line through

Tltusvllle, Cocoa, and Melbourne. Spur rail lines from the main llne at

Titusvllle to Launch Complexes 39A and 39B already exist.

2.3.3 STORAGE. Taking into consideration transfer losses, some 3,800,941 gallons

of LOX will be required for each HLLV launch. At the present time, each launch

pad has one 900,000 gallon spherical LOX storage tank. To the HLLV launch pad
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will need to be added at least three and preferably four more 900,000 gallon LOX

tanks. However, as pointed out in Section 3.3 below, the LOX as well as the LH 2

storage tanks will need to be moved further away from the HLLV llft-off site.
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III POTENTIAL HAZARDS

3. i RP- i EMERGENCY DUMP

Two RP-1 concrete-llned holding ponds exist at each Launch Complex, 39A and 39B.

The ponds, constructed for the Saturn V program, were designed to retain spilled

RP-I and discharge water. The dimensions of the pond are 150 feet by 250 feet

with a water depth of two feet (14). The two ponds at each launch pad are

capable of retaining some 1,122,000 gallons of RP-l, five times the RP-I capacity

of the Saturn V. In order to retain all of the RP-1 from an emergency HLLV dump,

the depth of the existing holding ponds will need to be increased by six feet to

a total depth of eight feet if we apply the same overdesign factor. This

overdesign factor is Justified because most certainly spilled RP-1 will be mixed

with rainwater in the ponds. Environmental restrictions demand that the

petroleum/water mixture be isolated from the environment until the ponds can be

pumped out and proper RP-I/water separation processes undertaken.

3.2 ACOUSTIC EFFECTS

Sound pressure levels generated by hlgh-thrust booster engines must be

considered. Overall sound pressure levels of 120 to 135 decibels (dB) are

important noise levels considered in formulating zoning restrictions. For

protection of public property, 120 dB (intermittent) is considered the maximum

overall sound pressure level to which the public should be exposed. At 135 dB

(intermittent), ear protection is required and some damage to conventional

structures may be expected. Sustained exposure to 90 dB wlll result in hearing

damage (15).

According to the KSC Master Plan File for 1972 (conference with Merle D. Buck,

Facilities Master Planning Office, Facilities Engineering Directorate, KSC,

Florida, July 7, 1992), the Saturn V booster stage produced 135 dB at 4,000 feet,

which decreased to 120 dB at 19,000 feet from the launch site. The Saturn V

first stage booster was powered by five F-I engines, whereas the HLLV will employ

seventeen F-IA engines. Linear extrapolation gives a calculated 120 dB radius

for the HLLV of 64,600 feet. Although large, this number is still considered to

be rather modest because the F-IA engines in future HLLV's will be 20% more

powerful than the old F-I engines. In Figure 3-1, the 120 dB level radius

associated with a HLLV launch from Complex 39A is shown superimposed (broken

llne) on a map of the KSC/CCAFS area. Also shown for comparison is the 120 dB

radius for the Saturn V (inner broken llne). Not only does the 120 dB limit for

the HLLV come very close to the City of Titusville, but essentially all of the

KSC and CCAFS operational facilities fall within this noise area. Similar

calculations show that the 135 dB level for HLLV's will occur at approximately

13,600 feet. Although not shown in Figure 3-1, this level falls Just short of
the VAB area.

Noise associated wlth rocket booster llft-offs may be characterized as brief,

intense, and predominantly low frequency. In surrounding communities to

KSC/CCAFS, launch vehicienolse is usually perceived=as a distant rumble. Based

on the current launch environment, noise generated by iaunche_, at worst, is

considered to be an infrequent nuisance and does not pose a potential health risk
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to on- or off-slte populations (16). However, this preliminary study suggests

that noise associated with future HLLV launches will be more than an infrequent

nuisance and may very well pose a potential health risk to both on- and off-slte

populations. It is almost certalnthat appropriate nolse-abatement measures will

need to be incorporated into future HLLV design plans.

3.3 FIREBALL AND BLAST EFFECTS

Studies of hazards associated with liquid propellant explosions must include both

blast effects and the thermal environment. Liquid propellant explosions are

characterized by a sudden release of a large volume of hot gases, often

accompanied by pressure shock. These explosions are considered to be low-order

detonations followed by deflagratlon (burning of the rocket above the launch pad

in the event of an accidental failure or deliberate activation of the vehicle

destruct system) (17).

Such a study was made for the Saturn V in which was described the thermal

environment (the fireball) derived from empirical data and correlation with

analytical results (18). For this study, it was assumed that: (i) all the fuel

on the Saturn V is consumed in the fireball formation; (2) the fireball expands

by deflagratlon rather than detonation or conflagration (burning of the rocket

on the launch pad); and (3) the fireball shape is spherical.

In Figure 3-2 are presented the maximum diameters of fireballs from some

experimental tests and missile failures. The following equation was derived by

a least squares regression analysis of the data (19):

D ffi 9.82 We'32° (I)

where D - maximumdiameter, ft., and W - weight of propellant, lb.

The fireball duration, derived in a manner similar to that for diameter, is

illustrated in Figure 3-3. The least squares fit to the data is as follows:

Duration = 0.232 W°'3_

where duration is in seconds.

(2)

Using a total HLLV propellant weight of 20.6 million pounds, a maximum fireball

diameter of 2,150 f@et @nd a duration time of 51 seconds were calculated from

Equations (I) and (2), respectively. These points have been added to Figures 3-2

and 3-3. "

of particular interes_ In these studies is the eb_e_atlon that both flreball

diameter and duration are-functions of total propellant mass only and not of the

type of propellant.
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The effective area covered by the HLLV fireball is shown as a broken circle in

Figures 3-4 and 3-5, which are drawings of Launch Pads 39A and 39B, respectively.

Inspection of Figures 3-4 and 3-5 shows that the HLLV fireball would come very

close to propellant storage facilities on both pads and would spread over most

of the maintenance and service operations buildings adjacent to the launch sites.

As part of the SEI, various designs are being considered for upgrading and

extending the launch pads at 39A and 39B for future HLLV missions. Such
reconstruction should also include the relocation of maintenance and service

operations buildings considerably outside the sphere of a possible HLLV

deflagratlon.

The complete Saturn V/Apollo configuration containedthe explosive equivalent of
1,193,227 lbs. of TNT (1). Based upon relative quantities of total propellants,

the HLLV will have a TNT equivalent three times greater (and more than ten times

greater than the space shuttle). The KSC Master Plan File for 1972 also outlined

safety criteria regarding blast effects. It was determined that at 7,000 feet

from a Saturn V detonation, the overpressure resulting from the blast would be

0.65 pounds per square inch (psi). This is the maximum allowable overpressure

that ordinary windowless building construction can withstand wlthoutdamage. All

KSC ordinary buildings are designed to withstand a mlnlmum overpressure of 0.2B

psi. For the HLLV, this overpressure limit would be extended to 21,O00 feet,

approximated by the circle indicating the 120 dB nolse level radius for Saturn V

in Figure 3-1. The VAB area falls Just within this limit. It was established

that the maximum allowable overpressure to which the Saturn V rocket could be

subjected was 0.40 psi. This established the launch danger radius or vehicle

protection distance. Launch Complex Pads 39A and 39B are separated at a distance

of approximately 8,700 feet, which complies with this criterion. If it is

assumed that the 0.40 psi overpressure limit applies to the HLLV as well, then

in order to comply with the safety criteria, HLLV's could not be on Pads 39A and
39B at the same time. V
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IV CONCLUSIONS

It is concluded from this study that no major problems should arise with regard

to the logistics of securing, transporting, and storage of large quantities of

propellants which will be required in future HLLV missions. At the same time,

the handling of such large quantities of fuels and LOX should have no serious

effect on the KSC infrastructure and, in fact, will be facilitated by

reactivation of facilities already present at KSC. Some changes will be

necessary, however. The location of some critical facilities, such as operations

buildings, RP-I, LH2, and L0X storage tanks, etc., will need to be relocated

further away from the HLLV launch site than they are now in order to avoid a

hostile thermal environment (fireball) or blast damage associated with either a

HLLV deflagration or detonation.

With regard to specific HLLV propellants, the following conclusions can be drawn:

Supply of RP-I should pose no problem. However, the HLLV will require

four times (by volume) as much RP-I as Saturn V, so transportation of

RP-I by either commercial mobile tankers or tall tank cars is not

deemed practical. Barge transportation appears most attractive,

particularly since a barge channel to Pad 39A already exists. Such a

barge could also serve as the storage site since no suitable RP-I

storage facilities exist as KSC today.

The HLLV will utilize slightly more I/42 than did the Saturn V.

Certainly the supply of LH 2 should pose no problem, particularly since

new facilities for LHz production are either now under construction or

being planned. Since at least one of the new plants will be in Florida

and closer to KSC, the continued use of mobile tankers (and possibly

rail tank cars) is feasible. Storage of LH 2 is no problem except for

the relocation problem discussed above.

Unlike Saturn V, the HLLV will consume large quantities of oxygen,

approximately 3% of the annual production in the United States.

Overall this should create no problem, except for the fact that the LOX

plant in Mims, Florida, would have to be increased by at least 100% in

order to meet future HLLV requirements. However, if necessary, LOX

manufacturing facilities in Orlando, Tampa, and Jacksonville could be

utilized. Considering the closeness of LOX facilities to KSC, rail

tank cars appear to be the most practical means of transportation.

Barge transport of LOX from Mims to Launch Pads 39A and/or 39B would

either involve LH 2 and LOX barges using the same channels, a

potentially dangerous situation, or digging of new channels

specifically for LOX barges, an environmentally unacceptable solution.

Launch pad storage facilities for LOX will have to be increased

substantially. At least four additional 900,000 gallon L0X storage

tanks (in addition to the 900,000 gallon tank now located adjacent to

each pad) will be required for future HLLV missions. Existing tanks

must, of course, be relocated.

__jJ
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The one technical problem which must be solved will be that of noise associated

with HLLV launches. Unlike previous Saturn V launches or even space shuttle

launches today, future acoustic effects associated with the HLLV will be more

than Just a temporary nuisance. Nolse-abatement measures must, and certainly

will, be found.
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V RECOMMENDATIONS FOR FUTURE WORK

Time constraints did not permit an analysis of either the environmental impact

or cost analysis of future HLLV missions. Certainly environmental issues when

handling this quantity of propellants must be considered. During the past three

decades, new and increasingly stronger regulatory pollcles for the handling and

clean-up of hazardous materials have been promulgated.

Specific objectives which would be addressed in future work are as follows:

Become cognizant of all standards and regulations: governmental (EPA,

OSHA, State of Florida, etc.), non-governmental (ANSI, ASTM, etc.),

military and industrial relating to petrochemlcal-based fuels, LHz, and
LOX.

o Become familiar with the state-of-the-art with respect to RP-I

detection and clean-up techniques.

o Review updated medical data which may have been obtained during the

past thirty years with respect to the toxic effects of RP-I.

o Undertake an overall environmental assessment for the HLLV program.

Recently, in compliance with the National Environmental Policy Act of 1969 and

the regulations of the President's Council on Environmental Quality, an

environmental assessment has been prepared for General Dynamics Space Systems

Division for their commercial Atlas IIAS program (16). The results of this study

showed that the implementation of the Atlas IIAS program would have no

significant environmental impact. It is hoped that the same will hold true for

future HLLV projects.

A cost analysis will, of course, be required. A unique aspect of the HLLV

propellant system (like Saturn V) is that RP-I, LH 2, and LOX are all derived from

starting materials plentiful and inexpensive (petrdleum and air). The major

expense items are thus processing and transportation, the former item

predominating (telephone conversation with Chet Roberts, Compressed Gas

Association, Arlington, Virginia, July 7, 1992). The major processing expense

is the cost of energy (ii). In qualitative terms, the expense of HLLV

propellants will be the cost of the energy necessary to extract RP-I, LH 2, and

LOX from their starting materials plus the cost of transporting this chemical

energy to the launch site. The cost of producing LH z and LOX is particularly

energy-sensltlve and reduction in propellant expense will come primarily through

cheaper electrical power, although improved processing methods and more efficient

means of transportation will also be important.

New propellant storage separation distances must be determined. Because of

transfer losses, some 1.07 million gallons of RP-I, 0.480 million gallons of LH2,

and 3.80 million gallons of LOX will be required for each HLLV launch. These

storage facilities cannot be located at existing sites on Pads 39A and 39B, which

are 1,450 feet from the pad centers. The basis for calculating safety distances

has been established for different classes of explosive, including rocket

propellants (20,21).
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